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PREDICTION OF HUMAN BLOOD:AIR PARTITION COEFFICIENT: A COMPARISON OF
STRUCTURE-BASED AND PROPERTY-BASEB‘ METHODS

S.C. BASAK,*D. MILLS,”D. M. HAWKINS,® and H. A. EL-MASRI®

@ Natural Resources Research Institute, University of Minnesota Duluth
5013 Miller Trunk Highway, Duluth, MN 55811, USA
b School of Statistics, 313 Ford Hall, 224 Church Street S. E., University of Minnesota Minneapolis, MN 55455,
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¢ Computational Toxicology Laboratory, Division of Toxicology Agency for Toxic Substances and Disease Registry
(ATSDR), Executive Park Building 4, 1 600 Clifton Road, E-29, Atlanta, GA 30333, USA

In recent years, there has been increased interest in the development and use of quantitative structure
activity/property relationship (QSAR/QSPR) models. For the most part, this is due to the fact that experimental data
is sparse and obtaining such data is costly, while theoretical structural descriptors can be obtained quickly and
inexpensively. In this study, three linear regression methods, viz. principal component regression (PCR), partial least
squares (PLS), and ridge regression (RR), were used to develop QSPR models for the estimation of human blood:air
partition coefficient (IogPyio0d:air) for a group of 31 diverse low-molecular weight volatile chemicals from their
computed molecular descriptors. In general, RR was found to be superior to PCR or PLS. Comparisons were made
between models developed using parameters based solely on molecular structure and linear regression (LR) models
~ developed using experimenfal properties, including saline:air partition coefficient (10gPatine-air) and olive oil:air
partition coefficient (10gPorive oil-air), a5 independent variables, indicating that the structure-property correlations are
comparable to the propqny-property correlations. The best models, however, were those which used rat 10gPyiood:air
as the independent variable. Haloalkane subgroups were modeled separately for comparative purposes, and although
models based on the congeneric compounds were superior, the models developed on the complete set of diverse
compounds were of ac;:epfable quality. The structural descriptors were placed into one of three classes based on
level of complexity: Topostructural (TS), topochemical (TC), or 3-dimensional / geometrical (3D). Modeling was
performed using the structural descriptor classes both in a hierarchical fashion and separately. The results indicate

that the highest quality structure-based models, in terms of descriptor classes, were those derived using TC or

TS+TC descriptors.

Key Words: Blood:air partition coefficient; PBPK model; theoretical molecular descriptors; ridge regression;
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quantitative structure-property relationship (QSPR) model.
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1. INTRODUCTION

Modern lifestyle worldwide is based on the use of a large number of chemicals. Natural and synthetic
chemicals are used as drugs, pesticides, herbicides, components of diagnostic tools, ingredients and
solvents in industrial processes, to name just a few. The Toxic Substances Control Act (TSCA) Inventory
maintained by the United States Environmental Protection Agency (USEPA) currently has over 81,000
entries and the list is growing every year."). Many of these chemicals are used for various purposes and
have the potential to be released in the environment. Therefore, it is natural that we need to carry out risk
assessment of the TSCA chemicals, particularly for those that are used frequently and in large quantities.
Volatile organic chemicals (VOCs) constitute a class of chemicals that are frequently used in various
industrial processes. Therefore, there is an interest to predict the potential adverse effects of these
chemicals on human and environmental health. The overall risk of a chemical is determined primarily by
its intrinsic toxicity (hazard) and exposure potential.

The blood:air partition coefficient of VOCs is an important determinant of pulmonary uptake of such
chemicals from inhaled air. Such parameters are routinely used in building physiologically-based
pharmacokinetic (PBPK) models for exposure assessment of such chemicals. Solubility of VOCs in blood
is determined by its composition including the content of neutral lipid, phospholipid, and water, as well as
the extent of binding of these chemicals to specific components such as plasma proteins and
hemoglobin.”’ Such physicochemical considerations can be used to come up with physicochemically-
based methods for the estimation of partition coefficient values of chemicals. The other possibility is the
use of molecular descriptors to estimate partition coefficient of chemicals directly from their structure.
Such quantitative structure-activity/property relationship (QSAR/QSPR) methods derived using
theoretical descriptors are based on the idea that observable physicochemical and biological properties of
chemicals are determined by their molecular structure. In particular, QSPRs have been found to be useful
in the estimation of physicochemical properties such as octanol:water partition coefficient of various
groups of chemicals,® ¥ as well as the degree of transport through the blood-brain barrier® and skin,® of
various congeneric and diverse sets. '

While some quantitative models use experimental data per sev as independent variables, it is important
to note that experimental data does not exist for the majority of compounds, and obtaining such data is
costly in terms of time and monetary resources. Computational modeling involving algorithmically
calculated parameters based solely on molecular structure is an inexpensive alternative. In this paper, we
have attempted to develop QSPR models to estimate human blood:air partition coefficients for a set of 31

VOCs using molecular descriptors which can be computed directly from molecular structure.
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2. METHODS

2.1 Database. Liquid:air partition coefficients were experimentally determined by Gargas et al.” using a
modified version of the gas-phase vial equilibrium technique® for a set of low molecular-weight volatile
chemicals. Table I includes experimentally determined human and male Fischer 344 rat blood:air partition
coefficient data for a set of 31 chemicals including 18 haloalkanes, 2 nitroalkanes, 2 aliphatic
hydrocarbons, 4 haloalkenes, and 5 aromatics compounds. The human blood:air partition coefficient
values were determined on blood pretreated with diethyl maleate to inhibit an observed glutathione
transferase reaction. Experimental saline:air and olive oil:air partition coefficients, determined by Gargas
et al., are also listed in Table 1. All experimental values were obtained at 37 °C.

It should be noted that the data used in the current study are a subset of that reported by Gargas et al.®
Two cis/trans isomers were eliminated because they are indistinguishable in terms of their calculated
molecular descriptors based on SMILES input. Methyl chloride was also removed from the data set as it
is not possible to calculate our entire set of theoretic descriptors on two-atom compounds. In addition,
two compounds were reported without discrete values for 0.9% saline:air partition coefficient and thus

were not included in this study.

2.2 Theoretical Molecular Descriptors. Theoretical molecular descriptors may be divided into
hierarchical classes based upon level of complexity. Topostructural (TS) descriptors, which encode
information strictly on the adjacency and connectedness of atoms within a molecule, make up the simplest
of the hierarchical classes. Topochemical (TC) descriptors encode information related to the chemical
nature of a molecule ipcluding bond type. The 3-dimensional or shape descriptors (3D) are still more
complex, encoding inf:ormation about the 3-dimensional aspects of a molecule. Calculated 10gPy-octanotwater
descriptors(9) were iri_cfuded at the final stage of hierarchical model development. The topostructural and
topochemical descriptors are collectively referred to as topological descriptors.

Descriptors used in the present study were derived from molecular structure using software packages
including POLLY, " Triplet,"" ' and Molconn-Z."® From POLLY;, a set of topological descriptors is
available, including a large group of connectivity indices,'*!" path-length descriptors,!¥ and information
theoretic'® ' and neighborhood complexity indices.*® The Triplet descriptors also constitute a large
group of topological parameters. They are derived from a matrix, a main diagonal column vector, and a
free term column vector, converting the matrix into a system of linear equations whose solutions are the
local vertex invariants. These local vertex invariants are then used in the following mathematical

operations in order to obtain the triplet descriptors:
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1. Summation, E;x;

Summation of squares, Eix

Summation of square roots, Ex;'?

Sum of inverse square root of cross-product over edges ij, E;(xix;) 12

Product, N(Eix;)'™

AP B

Molconn-Z provides additional topological descriptors, including an extended set of connectivity indices,
electrotopological indices,®" 2" and hydrogen bonding descriptors, as well as a small set of molecular
shape descriptors.

H-Bond, a software program developed by Basak,® was used to calculate HB,, a measure of
hydrogen bonding potential. Balaban’s J indices were also calculated by software developed by the
authors. @

LogP,..octanol:water Values were calculated by the LogP program(9) and are included in Table L. Table I
provides a brief description of all other theoretical molecular descriptors used in the current study, though

the calculated values for these descriptors are not included for the sake of brevity.

2.3 Statistical Analysis. Independent and dependént variables were scaled by the natural logarithm, as
their respective ranges differed by several orders of magnitude. The CORR procedure of the SAS
statistical package® was used to identify perfectly correlated descriptors, i.e.r=1.0.In each case, only
one descriptor of a perfectly correlated pair was retained for use in the subsequent analysis. Any
descriptor that either had a value of zero for all compounds in the data set or could not be calculated for
all compounds in the data set was removed.

The structure-property models were developed using ridge regression (RR),*" principal components

@-3) methodologies, utilizing molecular

regression (PCR),®® and partial least squares (PLS) regression
descriptors in a hierarchical fashion. In addition, each class of descriptors was used independently to
obtain single-class models. RR, PCR, and PLS are useful in cases wherein the number of descriptors is
much greater than the number of observations, as well as in cases where the independent variables are
highly intercorrelated. In addition, these regression methods make use of all independent variables as
opposed to subset regression wherein it is possible that important parameters may be eliminated from the
study. Linear regression (LR) was used to obtain the property-property models, which involve 1-2
independent variables. Statistical parameters reported include the cross-validated R?value and the PRESS

statistic which are reliable measures of model predictability. In addition, the ¢ values can be examined in
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order to identify significant descriptors. Although a descriptor with a large | ¢ | indicates that the
associated descriptor is important in the model, it should be cautioned that the reverse is not necessarily
true. |
Honest assessment of the quality of a prediction model is seldom straightforward, but is particularly
challenging in a situation such as this where the number of independent variables far exceeds the number
of observations.®> ¥ In these cases, conventional regression measures such as R? are useless. The
measure we use is the cross-validation (or jack-knife) sum of squares. For this measure, each compound
in turn is omitted from the data set, and the coefficients of the regression model (RR, PLS or PCR)
computed using the remaining n-1 cases. These coefficients are used to predict the hold-out case. The
overall quality of the fit is measured by the prediction sum of squares PRESS — the sum of squares of the

difference between the actual observed activity and that predicted from the regression. A cross-validation

R? can be defined by
R =1- PRESS
SSTotal

Unlike R?, this Rfv does not increase if irrelevant predictors are added to the model; rather it tends to

decrease. And where R? is necessarily non-negative, Rfv may be negative. This non-uncommon

situation is an indication that the model fitted is poor —worse, in fact, than making predictions by

ighoring the predictors and using the mean activity as the prediction in all circumstances.

Rczv mimics the results of applying the final regression to predicting a future case; large values can be
interpreted unequivocally and without regard to either the number of cases or predictors as indicating that
the fitted regression vx(ill accurately predict the activity of future compounds of the same chemical type as

those used to calibrate the regression.

3. RESULTS AND DISCUSSION

Table III provides results of studies done on the complete set of 31 diverse compounds as well as the
subset of 18 haloalkanes for the prediction of human logPuiood:air- Examining the models developed using
structural descriptors, we find that the RR methodology is generally superior to both PCR and PLS. This
is supported by our earlier studies with various congeneric and diverse sets of chemicals.®**® The model
developed using TC descriptors as independent variables was superior to those developed with other
structural descriptor classes in the analysis of the 31 diverse compounds, while the TS+TC model was

superior in the analysis of the 18 haloalkanes.
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The results of QSPRs reported in this paper show that structure-property correlations are comparable
or superior to property-property correlations involving experimental saline:air and olive oil:air partition
coefficients in the prediction of human blood:air partition coefficient. For the set of 31 diverse chemicals,
a cross-validated R? of 0.874 and a PRESS of 7.79 is obtained for the TC model, while the property-
property model utilizing 10gPgiine:air and 10gPolive:oil air yields a cross-validated R? of 0.889 with a PRESS of
6.19 (Table III). For the set of 18 haloalkanes, the TS+TC models yields a cross-validated R? of 0.897
with a PRESS of 3.02, while the property-property model utilizing logPiine:air and 10gPsive:oit aryields a
cross-validated R? of 0.846 with a PRESS of 4.50. However, property-property models in which rat
10gPbio0d:air 1S used to predict human 10gPuiood:air are superior to those in which either logPgine-air and
108Pojive:oil air OF Structural parameters are used as predictors; with a cross-validated R? of 0.963 and PRESS
of 2.25 for the full set of 31 compounds, and a cross-validated R? 0f 0.961 and PRESS of 1.16 for the
subset of 18 haloalkanes.

It is clear from the results presented in Table III that experimental rat blood:air partition coefficient is
the best predictor of human blood:air partition coefficient. Acquiring these data, however, is time
consuming and requires laboratory testing resources along with the sacrifice of animals. Experimental
determination of rat blood:air partition coefficient of hundreds or thousands of candidate chemicals would
be a daunting task. The theoretical descriptor-based models, on the other hand, can provide reasonable
estimates very quickly and at a low cost.

Ridge regression coefficients and standard errors for the top 10 descriptors based on | t | values for the
human 10gPyjood.air TC model based on the set of 31 diverse chemicals are provided in Table IV. The
indices most important for the prediction of human logPuie0d:air include: a) molecular weight (fw),
quantifying molecular size, b) triplet indices (AZVy), encoding information about the nature of atoms, c)
electrotopological state indices (SdO, SddSN, SSBr), which are numerical descriptors of the electronic
states of atoms, d) valence and bonding connectivity indices ( x® 9%, which quantify structural
information regarding molecular size and shape, and ¢) a hydrogen bonding parameter (HB;). The
important role of molecular factors such as size, electronic interactions, and hydrogen bonding in
determining partition coefficients of chemicals is evident from our earlier studies®*” and those of Kamlet
et al.®®

It is important to reiterate that model predictability is best judged, not with a fitted model, but with a
cross-validated model wherein each of the compounds, in turn, is omitted from the data set and its value
then determined by the coefficients of the remaining n-1 compounds. In this way, we have an accurate, if
not conservative, indication of how well the model will predict property values of new compounds which
are similar to those used to create the model. Figure 1 illustrates the relationship between the fitted and

experimental human logPuiood-air Values using the TC model for the set of 31 diverse compounds. All
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statistical values reported in this paper, however, are based on cross-validated results. Accordingly,
Figure 2 illustrates the relationship between the cross-validated predicted and experimental human
10gPb100d:air values using the TC model for the set of 31 diverse compounds.

In conclusion, the models based on rat 10gPyjoodair are superior to any of the structuré-based models. It
is important to note, however, that experimental data are not currently available for the majority of
compounds; and obtaining this data is costly in terms of time and monetary resources. In contrast, we are
able to obtain reasonably good models using structural descriptors that can be calculated very quickly and
inexpensively for both existing and unsynthesized chemicals. Modeling based on structural descriptors
also promotes an understanding of the theoretical basis of properties and reduces the need for animal

research, an area to which a growing aversion exists in our society.
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Submitted to Risk Analysis

Table IL Symbols, definitions and classification of calculated molecular descriptors

Topostructural (TS)

Ig Information index for the magnitudes of distances between all possible pairs of vertices of a
graph

IVI;' Mean information index for the magnitude of distance

w Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph

I Degree complexity

HY Graph vertex complexity

HP Graph distance complexity

IC Information content of the distance matrix partitioned by frequency of occurrences of distance
h

M, A Zagreb group parameter = sum of square of degree over all vertices

M, A Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected)
vertices

By Path connectivity index of order h = 0-10

By Cluster connectivity index of order h = 3-6

Pypc Path-cluster connectivity index of order h = 4-6

By ch Chain connectivity index of order h = 3-10

Py Number of paths of length h = 0-10 -

J Balaban’s J index based on topological distance

nrings Number of rings in a graph

ncirc Number of circuits in a graph

DN’S, Triplet index from distance matrix, square of graph order (# of non-H atoms), and distance
sum; operation y = 1-5

DN?1, Triplet index from distance matrix, square of graph order, and number 1; operation y = 1-5

AS], Triplet index from adjacency matrix, distance sum, and number I;
operationy = 1-5

DS1, Triplet index from distance matrix, distance sum, and number 1;
operation y = 1-5

ASN, Triplet index from adjacency matrix, distance sum, and graph order; operation y = 1-5

DSN, Triplet index from distance matrix, distance sum, and graph order;
operation y = 1-5

DNzNy Triplet index from distance matrix, square of graph order, and graph order; operation y = 1-5

ANS, Triplet index from adjacency matrix, graph order, and distance sum; operation y = 1-5

AN1, Triplet index from adjacency matrix, graph order, and number 1;
operation y = 1-5

ANN, Triplet index from adjacency matrix, graph order, and graph order again; operation y = 1-5

ASV, Triplet index from adjacency matrix, distance sum, and vertex degree; operation y = 1-5

DSV, Triplet index from distance matrix, distance sum, and vertex degree; operation y = 1-5

ANV, Triplet index from adjacency matrix, graph order, and vertex degree; operation'y = 1-5

Topochemical (TC)

0O Order of neighborhood when IC; reaches its maximum value for the hydrogen-filled graph

Oorb Order of neighborhood when IC, reaches its maximum value for the hydrogen-suppressed
graph

Lo Information content or complexity of the hydrogen-suppressed graph at its maximum
neighborhood of vertices

IC, Mean information content or complexity of a graph based on the ™ (r = 0-6) order
neighborhood of vertices in a hydrogen-filled graph

SIC, Structural information content for r'* (r = 0-6) order neighborhood of vertices in a hydrogen-
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nelem
fw

si

totop
suml
sumdell
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phia
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numHBa
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SHvin
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SHHBd

SHwHBd

SHHBa
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filled graph ‘ v
Complementary information content for ™ (r = 0-6) order neighborhood of vertices in a
hydrogen-filled graph

Bond path connectivity index of order h = 0-6

Bond cluster connectivity index of order h = 3-6

Bond chain connectivity index of order h = 3- 6
Bond path-cluster connectivity index of order h = 4-6

Valence path connectivity index of order h = 0-10
Valence cluster connectivity index of order h = 3-6

Valence chain connectivity index of order h = 3-10
Valence path-cluster connectivity index of order h = 4-6

Balaban’s J index based on bond types

Balaban’s J index based on relative electronegativities

Balaban’s J index based on relative covalent radii

Hydrogen bonding parameter

Triplet index from adjacency matrix, atomic number, and vertex degree; operation y = 1-5
Triplet index from adjacency matrix, atomic number, and distance sum; operation y = 1-5
Triplet index from adjacency matrix, distance sum, and atomic number; operation y = 1-5
Triplet index from adjacency matrix, atomic number, and graph order; operationy = 1-5
Triplet index from adjacency matrix, graph order, and atomic number; operation y = 1-5
Triplet index from distance matrix, distance sum, and atomic number; operation y = 1-5
Triplet index from distance matrix, square of graph order, and atomic number; operation y = 1-
5

Number of non-hydrogen atoms in a molecule

Number of elements in a molecule

Molecular weight

Shannon information index

Total Topological Index t

Sum of the intrinsic state values I

Sum of delta-I values

Total topological state index based on electrotopological state indices

Flexibility index (kp1* kp2/nvx)

Bonchev-Trinajsti0] information index

Bonqhev—TrinajstiD information index

Wierierp

Plattf

Total Wiener number

Difference of chi-cluster-3 and path/cluster-4

Valence difference of chi-cluster-3 and path/cluster-4

Number of classes of topologically (symmetry) equivalent graph vertices

Number of hydrogen bond donors

Number of weak hydrogen bond donors

Number of hydrogen bond acceptors

E-State of C sp® bonded to other saturated C atoms

E-State of C sp® bonded to unsaturated C atoms

E-State of C atoms in the vinyl group, =CH-

E-State of C atoms in the terminal vinyl group, =CH,

E-State of C atoms in the vinyl group, =CH-, bonded to an aromatic C

E-State of C sp” which are part of an aromatic system

Hydrogen bond donor index, sum of Hydrogen E-State values for -OH, =NH,

-NH2, -NH-, -SH, and #CH

Weak hydrogen bond donor index, sum of C-H Hydrogen E-State values for hydrogen atoms
on a C to which a F and/or Cl are also bonded

Hydrogen bond acceptor index, sum of the E-State values for ~OH, =NH,

11




Submitted to Risk Arnalysis

-NH2, -NH-, >N-, -O-, -S-, along with —F and —Cl

Qv General Polarity descriptor
NHBint, Count of potential internal hydrogen bonders (y = 2-10)
SHBint, E-State descriptors of potential internal hydrogen bond strength (y =2-10)

Electrotopological State index values for atoms types:

SHsOH, SHANH, SHsSH, SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, Hmax Gmax,
Hmin, Gmin, Hmaxpos, Hminneg, SsLi, SssBe, Sssss,Bem, SssBH, SsssB, SssssBm, SsCH3,
SACH2, SssCH2, StCH, SdsCH, SaaCH, SsssCH, SddC,StsC, SdssC, SaasC, SaaaC, SssssC,
SsNH3p, SsNH2, SssNH2p, SdNH, SssNH, SaaNH, StN, SsssNHp, SdsN, SaaN, SsssN,
SddsN, SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi,
SsPH2, SssPH, SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, SsCl,
SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, SsssssAs, SsSeH,
SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2, SsssSnH, SssssSn, Ssl,
SsPbH3, SssPbH2, SsssPbH, SssssPb

Geometrical / Shape (3D)

kp0 Kappa zero
kp1-kp3 Kappa simple indices
kal-ka3 Kappa alpha indices

12
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Table ITLl. Summary statistics of predictive models for human logPyo0d:air based on experimental properties and
theoretical structural descriptors.

A. 31 DIVERSE CHEMICALS

RR PCR PLS LR
Independent RZ,, PRESS R?., PRESS R?,, PRESS R*., PRESS
Variables
Structural descriptors
TS 0.257 45.8 -0.451 894 0.052 584
TS+TC 0.846 9.48 0.165 51.4 0.677 19.9
TS+TC+3D 0.827 10.6 0.140 53.0 0.620 23.4
TS+TC+3D+logP* 0.835 10.2 0.112 54.7 0.652 214
TS 0.257 45.8 -0.451 89.4 0.052 58.4
TC 0.874 7.79 0.403 36.8 0.709 17.9
3D 0.147 52.6 -0.013 62.4 -0.256 77.4
Properties
Logpolive oil:air + LOgPsaline:air 0.899 6.19
Rat 1ogPypiood:air 0.963 2.25
B. 18 HALOALKANES
RR PCR PLS LR
Independent R?., PRESS R?.. PRESS R?.,  PRESS R?., PRESS
Variables
Structural descriptors
TS 0.252 22.0 -1.53 74.3 -0.815 53.2
TS+TC 0.897 3.02 0.825 5.14 0.678 9.45
TS+TC+3D 0.892 3.16 0.856 422 0.702 8.74
TS+TC+3D+logP*  10.892 3.18 0.856 423 0.704 8.69
TS . 0.252 22.0 -1.53 74.3 -0.815 532
TC .- 0.891 321 0.853 4.32 0.616 11.3
3D 0.753 7.24 0.593 11.9 0.562 12.9
Properties
LogPolive oil:air LOgPsaline:air 0.846 4.50
Rat long;md;a;, 0.961 1.16

3Calculated 10gP,-octanol:water; Values included in Table 1.
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Table IV. Ridge regression coefficient and standard error for each of the top 10 descriptors, ranked by |t |, in the
topochemical model for the prediction of human logPyeod.air, 1 = 31.

Descriptor RR coeff s.e. t
SdO 0.227 0.021 10.690
HB,; 0.340 0.032 10.660
SddsN -1.694 0.159 -10.640
AZV; 0.130 0.016 8.000
W 0.345 0.052 6.670
AZV, 0.224 0.034 6.580
AZV, 0.133 0.024 5.640
SsBr 0.238 0.044 5.390
fw 0.287 0.054 5.310
® 0.139 0.028 5.060
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FIGURE CAPTIONS

Figure 1. Experimental vs fitted human logPpiood-air using the topochemical (TC) ridge regression

(RR) model for the set.of 31 diverse compounds

Figure 2. Experimental vs cross-validated predicted human logPbiood:air using the topochemical

(TC) ridge regression (RR) model for the set of 31 diverse compounds
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Figure 1.

Experimental LogP viood:air
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Fitted Logpblood:air
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Figure 2.
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Experimental LogPusicod:air

2 4

Cross-validated Predicted LogPyiood:air
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